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Abstract. In this paper, two relaxation algorithms on the Dirichlet Neumann boundary condition, for solving

the Cauchy problem governed to the Modified Helmholtz equation are presented and compared to the classical

alternating iterative algorithm. The numerical results obtained using our relaxed algorithm and the finite element

approximation show the numerical stability, consistency and convergence of these algorithms. This confirms the

efficiency of the proposed methods.
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1 Introduction

In General, boundary value problems for the Modified Helmholtz equation reads as follow

∆u− k2u = f,

where a real value of k is the wave number, is often encountered in many branches of science
and engineering. This equation is used to model a wide variety of physical phenomena. These
include among others, wave propagation, vibration phenomena, aeroacoustic.

We are interested in the Cauchy problem where the boundary conditions for both the solution
and its normal derivative are prescribed only on a part of the boundary of the solution domain,
whilst no information is available on the other part of the boundary (Bergam et al., 2019; Choulli,
2009; Isakov, 2017; Kabanikhin, 2012).

For the Cauchy problem for governed by the Poisson equation Jourhmane & Nachaoui (1996,
1999, 2002) proposed the relaxation of the given Dirichlet data in the case of the alternat-
ing iterative algorithm proposed in Kozlov et al. (1991) This procedure drastically reduced
the number of iterations required to achieve convergence for the inverse problems considered.
It was used in Essaouini et al. (2004) and Essaouini & Nachaoui. (2004) for a non linear el-
liptic problem, in elasticity (Ellabib & Nachaoui, 2008; Marin & Johansson, 2010), and re-
cently for Cauchy problem governed by Stocks equation (Chakib et al., 2018). Other meth-
ods have been developed for solving Cauchy’s problems. The reader can consult for example
Berntsson et al. (2017); Chakib et al. (2006); Choulli (2009); Isakov (2017); Kabanikhin (2012);
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Lavrent’ev (2013); Nachaoui (2003); Qian et al. (2010); Shi et al. (2009) and the references
therein. Our objective here is to propose a relaxation by dynamic parameters to solve the
Cauchy problem governed by Hemholtz equation. We how numerically that the application of
this algorithm considerably reduces the number of iterations to reach convergence compared
to the classical algorithm which suffers as it was shown in the literature of a slowness which
sometimes makes it unusable.

The paper is organized as follow. In section 2, we presents the mathematical formulation, on
the basis of dealing with modified Helmholtz equations. In section 3, we describe the different
alternating algorithms. Finally, section 6 is devoted to the numerical results and discussions.

2 Description of algorithms

Let Ω be a bounded domain in Rd with the Lipschitz boundary Γ, where d is the space dimension
in which the problem is posed, usually d ∈ {1, 2, 3}. Let Γ be divided into two disjoint parts Γ0

and Γ1. We denote ν the outward unite normal to the boundary Ω and consider the following
Cauchy problem for the Modified Helmholtz equation:

∆u− k2u = 0, in Ω, (1)

subject to the the following boundary conditions

u = f1, on Γ1, (2)

∂νu = f2, on Γ1, (3)

where the wave number k is positive real constant, ∂ν denotes the outward normal derivative of
u, f1 and f2 are known Cauchy data on Γ1. The Cauchy problem is an ill-posed problem in the
sense of Hadamard (1953).

2.1 The classical alternating algorithms

The alternating procedure is an iterative algorithm for solving Cauchy problems for laplace
equation was introduced by Kozlov-Maz’ya in Kozlov et al. (1991).

This alternating procedure for the problem (1)-(3) consists in solving alternatively two aux-
iliary problems defined, respectively by

∆u− k2u = 0, in Ω, (4)

u = v, on Γ0, (5)

∂νu = f2, on Γ1, (6)

and

∆u− k2u = 0, in Ω, (7)

∂νu = η, on Γ0, (8)

u = f1, on Γ1, (9)

where f1 and f2 are given in (1)-(3), while v and η are two functions will be changing in each
iteration. Problems (4)-(6) and (7)-(9) should alternately be solved until a prescribed stopping
criterion is satisfied. This algorithm can be summarized by
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Algorithm 1: Classical approach as proposed in Kozlov et al. (1991)

1: n← 0, choose the initial guess v = v0, then
2: Find u(2n) by solving the problem (4)-(6) and compute η = ∂νu

(2n) |Γ0 .
3: Find u(2n+1) by solving the problem (7)-(9).

4: If
||u(2m+1)−u(2m)||

L2(Γ0)

||u(2m+1)||
L2(Γ0)

< ε then stop.

5: Else, n← n+ 1, then
6: Compute v = v(n) = u(2n−1) |Γ0 and go to step 2.

The algorithm 1, applied for solving Cauchy problem for Helmholtz equation, have been the
subject of several studies (Johansson & Marin, 2009).

In the following, based on the work of Jourhmane & Nachaoui (1996, 1999), we will propose
two relaxation alternating algorithms for solving the problem (1)-(3). The aim of these relaxed
algorithms is to improve the computational time of the standard algorithm 1, and at the same
time maintain the accuracy of the numerical results obtained with this one.

2.2 The relaxed algorithm with fixed parameter factor

The first relaxation algorithm proposed to solve the problem (1) and (2)-(3) has the same
computational schemes as the standard alternating algorithm 1 but the Dirichlet condition (5)
is relaxed by some relaxation parameter 0 < θ 6 2.
This algorithm is summarised as follows,

Algorithm 2:

Step 1: For m← 0, specify an initial approximation v = v0 of u |Γ0 , and a relaxation
parameter 0 < θ 6 2.

Step 2: Find u(2m) by solving the well posed problem

∆u(2m) − k2u(2m) = 0, in Ω, (10)

u(2m) = v(m), on Γ0, (11)

∂νu
(2m) = f2, on Γ1, (12)

with v(0) = v0 |Γ0 and for m > 0,

v(m) = θu(2m−1) |Γ0 +(1− θ)v(m−1) |Γ0 . (13)

Step 3: Having construct u(2m) for x ∈ Ω and η(m) = ∂νu
(2m) |Γ0 the flux on Γ0, find u(2m+1)

by solving the following well posed problem

∆u(2m+1) − k2u(2m+1) = 0, in Ω, (14)

∂νu
(2m+1) = η(m), on Γ0, (15)

u(2m+1) = f1, on Γ1. (16)

Step 4: If
||u(2m+1)−u(2m)||

L2(Γ0)

||u(2m+1)||
L2(Γ0)

< ε then, go to Step 2.

Remark 1. The value θ = 1 in (13) corresponds to the standard alternating iterative algo-
rithm 1.
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2.3 The relaxed algorithm with dynamic factor

The continuation of the relaxation technique has been successfully progressed by Jourhmane &
Nachaoui (1999) for solving Cauchy problem based on finding automatic relaxed factor at each
iteration independent of initial guess. This dynamic relaxation factor depends on sequential
error between iterations.

This algorithm is summarized as follows,

Algorithm 3:

Step 1: For m← 0, specify an initial approximation v = v0 of u |Γ0 , and an initial factor θ0.

Step 2: Find u(2m) by solving the well posed problem

∆u(2m) − k2u(2m) = 0, in Ω, (17)

u(2m) = v(m), on Γ0, (18)

∂νu
(2m) = f2, on Γ1, (19)

with v(0) = v0 |Γ0 and for m > 0,

v(m) = θu(2m−1) |Γ0 +(1− θ)v(m−1) |Γ0 . (20)

Step 3: Having construct u(2m) for x ∈ Ω and η(m) = ∂νu
(2m) |Γ0 the flux on Γ0, find u(2m+1)

by solving the following well posed problem

∆u(2m+1) − k2u(2m+1) = 0, in Ω, (21)

∂νu
(2m+1) = η(m), on Γ0, (22)

u(2m+1) = f1, on Γ1. (23)

Step 4: compute e(2m) = u(2m) |Γ0 −u(2(m−1)) |Γ0 and e(2m+1) = u(2m+1) |Γ0 −u(2(m−1)) |Γ0

Step 5: compute θ(m) = ⟨e(2m),e(2m)−e(2m+1)⟩
||e(2m)−e(2m+1)||

L2(Γ0)

Step 6: If
||u(2m+1)−u(2m)||

L2(Γ0)

||u(2m+1)||
L2(Γ0)

< ε then stop. Else, m← m+ 1, then, go to Step 2.

3 Numerical results and discussion

In this section, we discuss the numerical results obtained using the all algorithms 1, 2 and 3
proposed for solving a Cauchy problem for Modified Helmholtz equation.

We consider Ω =]0, 1[×]0, b[ where b > 0 and we shall solve the following Cauchy problem
for Helmholtz equation

∆u− k2u = 0, in ]0, 1[×]0, b[, (24)

u(x, 0) = f1, on 0 ≤ x ≤ 1, (25)

∂yu(x, 0) = f2, on 0 ≤ x ≤ 1, (26)

u(0, y) = u(1, y) = 0, on 0 ≤ y ≤ b. (27)

We take Γ1 =]0, 1[×{0} and Γ0 =]0, 1[×{b}. For the numerical computations, we particularly
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choose b = 0.2, N = 400 and M = 80, and select the boundary data f1(x) = u(x, 0) on Γ1 as

u(x, 0) =

(
3 sin(πx) +

sin(3πx)

19
+ 9 exp(−30(x− b)2

)
x2(1− x)2. (28)

The exact boundary data on Γ0, used to test the performance of the algorithm, is given by

ue(x, b) = 2

(
8 sin(πx) +

sin(3πx)

17
+ 20 exp(−50(x− b)2

)
x2(1− x)2. (29)

We well solve the above Cauchy problem for Modified Helmholtz equation with two values
of k. Namely, k =

√
15, and k =

√
52. The initial guess, u(x, b) = 0 on Γ0 was taken for all

algorithms.

For all amgorithms we use the following stopping criteria

|| u(2m+1) − u(2m) ||
L2(Γ0)

|| u(2m+1) ||
L2(Γ0)

< ε. (30)

(a) (b)

Figure 1: Reconstructed and exact solutions on y = b: (a) algorithm 1, (b), algorithm 2

From fig.2, we see that for the case (k =
√
15), algorithms 1 and 2 produce solutions with

the same quality and which are very close to the exact solution .

However, as we can see in fig.2, the relaxed algorithm 2 is faster than algorithm 1 for for a
good choice of the parameter θ. In particular the choice of θ = θop = 1.9 allows the reduction of
the number of iterations by more than half.

Figure 2: Number of iterations at the convergence for algorithm 2 for k =
√
15.
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Figure 3: Convergence resultsalgorithms 1, 2 with θ = 1.9 and 3 for k =
√
15.

Figure 4: Convergence results for algorithms 1, 2 with θ = 1.9 and 3, for k =
√
52.

To show the efficiency of our algorithms we present other results for the case where the wave
number is quite high, k =

√
52 the convergence results are given in fig. 3 and fig. 4. From

these figures we see that that, for the same value of the stopping criterion, algorithm 2 and
algorithm3 produce solutions that are more precise than that produced by algorithm1. We show

Table 1: Convergence results for k =
√
15 and

√
52.

Wave number Algorithms ∥u− ue∥L2(Ω)/∥ue∥L2(Ω) Number of iteration

k =
√
15 Alg 1, θ = 1.0 0.043889 1122

Alg 2, θop = 1.9 0.0438868 558
Alg 3, θdynamic 0.0439249 120

k =
√
52 Alg 1, θ = 1.0 0.0459908 1572

Alg 2, θop = 1.9 0.0459895 827
Alg 3, θdynamic 0.0442255 133

the efficiency of the relaxation algorithms through the table 1. From this table and from the
above figures we see that the relaxed algorithm 2 with fixed parameter reduces the convergence
rate by half when algorithm3 with dynamic relaxation parameter redices drastically le nombre
d’iteration to the convergence (almost 10 times for k = 15 and almost 12 times for k = 52).
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3.1 Numerical stability

In this section, we examine numerically the stability of our approach. We will examine the
behavior of the algorithm 2 in the presence of small perturbations in the data. The Dirichlet
and Neumann boundary conditions on Γ1 are perturbed to simulate measurement errors such
that

f δ
1 = f1 + δf1, f δ

2 = f2 + δf2, (31)

where δf1 = f1 ∗ δ ∗ (2 ∗ rand− 1) and δf2 = f2 ∗ δ ∗ (2 ∗ rand− 1) are Gaussian noise with mean
zero, generated by an appropriate function ”rand”. While the δ is the noise level.

In order to show that our methods are numerically stable we applied some different level
of noise δ ∈ [1 ∗ 10−2, 2 ∗ 10−1] to given data and we compare the exact solution ue with the
approximate solution without noise and the approximate one uδ with different noise level δ.

Figure 5: Comparison between the exact solution, the approximate solution without noise and the
approximate one with different level of noise using Algorithm 3 with dynamic θ for k =

√
52

In figure 5 we present Comparison between the exact solution, the approximate solution
without noise and the approximate one with different level of noise.

As we can see in the figure, the obtained solutions uδ are close to the exact solution. We
can see that the produced errors are of the same order, this implies that the relaxed algorithms
are stables.

4 Conclusion

In this paper, we have investigated Cauchy problem associated with Modified Helmholtz equa-
tion. We have successfully adapted the relaxed algorithm introduced in Jourhmane & Nachaoui
(2002). We presented a variant with a dynamically computed parameter. The results are very
convincing the numerical results showed that these algorithms produce more precise solutions
than the classical alternative algorithm and that they are very fast. The relaxed alkgorithm 2
with dynamically computed parameter not only rids the user of hazardous choice of relaxation
parameter which can compromise the convergence but moreover it drastically reduces conver-
gence. This confirms our prediction that it is an excellent convergence acceleration algorithm.
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